A virus capsid-like nanocompartment that stores iron and protects bacteria from oxidative stress.
نویسندگان
چکیده
Living cells compartmentalize materials and enzymatic reactions to increase metabolic efficiency. While eukaryotes use membrane-bound organelles, bacteria and archaea rely primarily on protein-bound nanocompartments. Encapsulins constitute a class of nanocompartments widespread in bacteria and archaea whose functions have hitherto been unclear. Here, we characterize the encapsulin nanocompartment from Myxococcus xanthus, which consists of a shell protein (EncA, 32.5 kDa) and three internal proteins (EncB, 17 kDa; EncC, 13 kDa; EncD, 11 kDa). Using cryo-electron microscopy, we determined that EncA self-assembles into an icosahedral shell 32 nm in diameter (26 nm internal diameter), built from 180 subunits with the fold first observed in bacteriophage HK97 capsid. The internal proteins, of which EncB and EncC have ferritin-like domains, attach to its inner surface. Native nanocompartments have dense iron-rich cores. Functionally, they resemble ferritins, cage-like iron storage proteins, but with a massively greater capacity (~30,000 iron atoms versus ~3,000 in ferritin). Physiological data reveal that few nanocompartments are assembled during vegetative growth, but they increase fivefold upon starvation, protecting cells from oxidative stress through iron sequestration.
منابع مشابه
A virus capsid-like nanocompartment that protects bacteria from oxidative stress
As you will see, all referees find your study well performed. However, they propose some amendments and additional experiments to better support your data and claims, all of which are clearly outlined in the reports. Referee #1 furthermore indicates that the study would be better suited in a more specialized journal. This is particularly expressed in the general evaluation form provided by the ...
متن کاملStructural characterization of encapsulated ferritin provides insight into iron storage in bacterial nanocompartments
Ferritins are ubiquitous proteins that oxidise and store iron within a protein shell to protect cells from oxidative damage. We have characterized the structure and function of a new member of the ferritin superfamily that is sequestered within an encapsulin capsid. We show that this encapsulated ferritin (EncFtn) has two main alpha helices, which assemble in a metal dependent manner to form a ...
متن کاملPhage Capsid-like Structure of Myxococcus xanthus Encapsulin, a Protein Shell That Stores Iron
Iron is both an essential cofactor of many enzymes and a producer of highly reactive hydroxyl radicals that can cause cellular damage. To regulate the supply of intracellular iron, cells have developed protein-based organelles, like ferritins, that act as iron storage containers. Myxococcus xanthus, a soil-dwelling gram-negative myxobacterium, produces another type of protein-based organelle th...
متن کاملThe ferritin-like Dps protein is required for Salmonella enterica serovar Typhimurium oxidative stress resistance and virulence.
Resistance to phagocyte-derived reactive oxygen species is essential for Salmonella enterica serovar Typhimurium pathogenesis. Salmonella can enhance its resistance to oxidants through the induction of specific genetic pathways controlled by SoxRS, OxyR, sigma(S), sigma(E), SlyA, and RecA. These regulons can be found in a wide variety of pathogenic and environmental bacteria, suggesting that ev...
متن کاملIron Binding at Specific Sites within the Octameric HbpS Protects Streptomycetes from Iron-Mediated Oxidative Stress
The soil bacterium Streptomyces reticuli secretes the octameric protein HbpS that acts as a sensory component of the redox-signalling pathway HbpS-SenS-SenR. This system modulates a genetic response on iron- and haem-mediated oxidative stress. Moreover, HbpS alone provides this bacterium with a defence mechanism to the presence of high concentrations of iron ions and haem. While the protection ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The EMBO journal
دوره 33 17 شماره
صفحات -
تاریخ انتشار 2014